344 research outputs found

    Near-field radiative heat transfer between macroscopic planar surfaces

    Get PDF
    Near-field radiative heat transfer allows heat to propagate across a small vacuum gap in quantities that are several orders of magnitude greater then the heat transfer by far-field, blackbody radiation. Although heat transfer via near-field effects has been discussed for many years, experimental verification of this theory has been very limited. We have measured the heat transfer between two macroscopic sapphire plates, finding an increase in agreement with expectations from theory. These experiments, conducted near 300 K, have measured the heat transfer as a function of separation over mm to μ\mum and as a function of temperature differences between 2.5 and 30 K. The experiments demonstrate that evanescence can be put to work to transfer heat from an object without actually touching it

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    A Study of the Individual Contributions of Heat Generated by a XRISM/Resolve ADR Stage Magnet and Its Magnetic Shielding

    Get PDF
    A typical Adiabatic Demagnetization Refrigerator (ADR) has modest cooling power, on the order of a few microwatts. Thus, understanding heat loads going into and generated within the ADR is vital to its efficiency as well as the efficiency of the total cryogenic system of a spacecraft. One of the many sources of heat that effects the total cryogenic system is the parasitic heat due to AC loss in the ADR magnet and hysteretic loss in its magnetic shielding during a ramp. Although the sum of the heat from both of these sources can be measured during the operation of the ADR, the individual contributions are not easily obtainable in situ. Therefore, a study is being conducted to experimentally measure the contributions of the parasitic heat produced during ramping from the magnet only and from the magnet-shield combo. This study will give better inputs to the heat load model of the total cryogenic system being built for the X-Ray Imaging and Spectroscopy Mission (XRISM) slated to launch in 2022

    Search for 70 \mu eV Dark Photon Dark Matter with a Dielectrically-Loaded Multi-Wavelength Microwave Cavity

    Full text link
    Microwave cavities have been deployed to search for bosonic dark matter candidates with masses of a few μ\mueV. However, the sensitivity of these cavity detectors is limited by their volume, and the traditionally-employed half-wavelength cavities suffer from a significant volume reduction at higher masses. ADMX-Orpheus mitigates this issue by operating a tunable, dielectrically-loaded cavity at a higher-order mode, which allows the detection volume to remain large. The ADMX-Orpheus inaugural run excludes dark photon dark matter with kinetic mixing angle χ>1013\chi > 10^{-13} between 65.5 μ\mueV (15.8 GHz) and 69.3 μ\mueV (16.8GHz), marking the highest-frequency tunable microwave cavity dark matter search to date.Comment: 7 pages, 5 figure, to be submitted to PR

    ADMX-Orpheus First Search for 70 μ\mueV Dark Photon Dark Matter: Detailed Design, Operations, and Analysis

    Full text link
    Dark matter makes up 85% of the matter in the universe and 27% of its energy density, but we don't know what comprises dark matter. It is possible that dark matter may be composed of either axions or dark photons, both of which can be detected using an ultra-sensitive microwave cavity known as a haloscope. The haloscope employed by ADMX consists of a cylindrical cavity operating at the TM010_{010} mode and is sensitive to the QCD axion with masses of few μ\mueV. However, this haloscope design becomes challenging to implement for higher masses. This is because higher masses require smaller-diameter cavities, consequently reducing the detection volume which diminishes the detected signal power. ADMX-Orpheus mitigates this issue by operating a tunable, dielectrically-loaded cavity at a higher-order mode, allowing the detection volume to remain large. This paper describes the design, operation, analysis, and results of the inaugural ADMX-Orpheus dark photon search between 65.5 μ\mueV (15.8 GHz) and 69.3 μ\mueV (16.8 GHz), as well as future directions for axion searches and for exploring more parameter space.Comment: 21 pages, 29 figures. To be submitted to Physical Review D. arXiv admin note: substantial text overlap with arXiv:2112.0454

    Graphene-based photovoltaic cells for near-field thermal energy conversion

    Get PDF
    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.Comment: 5 pages, 4 figure

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    Search for Gravitational Wave Bursts from Soft Gamma Repeaters

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first year of LIGO's fifth science run. GW strain upper limits and model-dependent GW emission energy upper limits are estimated for individual bursts using a variety of simulated waveforms. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52 erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur
    corecore